Skip to content

Dataquery🔗

Manually converted from https://github.com/grafana/google-bigquery-datasource/blob/18680e42ba557791d109c7c540c2c3f2647592f0/src/types.ts#L75

Definition🔗

class Dataquery(cogvariants.Dataquery):
    """
    Manually converted from https://github.com/grafana/google-bigquery-datasource/blob/18680e42ba557791d109c7c540c2c3f2647592f0/src/types.ts#L75
    """

    dataset: typing.Optional[str]
    table: typing.Optional[str]
    project: typing.Optional[str]
    format_val: bigquery.QueryFormat
    raw_query: typing.Optional[bool]
    raw_sql: str
    location: typing.Optional[str]
    partitioned: typing.Optional[bool]
    partitioned_field: typing.Optional[str]
    convert_to_utc: typing.Optional[bool]
    sharded: typing.Optional[bool]
    query_priority: typing.Optional[bigquery.QueryPriority]
    time_shift: typing.Optional[str]
    editor_mode: typing.Optional[bigquery.EditorMode]
    sql: typing.Optional[bigquery.SQLExpression]
    # A unique identifier for the query within the list of targets.
    # In server side expressions, the refId is used as a variable name to identify results.
    # By default, the UI will assign A->Z; however setting meaningful names may be useful.
    ref_id: str
    # If hide is set to true, Grafana will filter out the response(s) associated with this query before returning it to the panel.
    hide: typing.Optional[bool]
    # Specify the query flavor
    # TODO make this required and give it a default
    query_type: typing.Optional[str]
    # For mixed data sources the selected datasource is on the query level.
    # For non mixed scenarios this is undefined.
    # TODO find a better way to do this ^ that's friendly to schema
    # TODO this shouldn't be unknown but DataSourceRef | null
    datasource: typing.Optional[dashboard.DataSourceRef]

Methods🔗

to_json🔗

Converts this object into a representation that can easily be encoded to JSON.

def to_json() -> dict[str, object]

from_json🔗

Builds this object from a JSON-decoded dict.

@classmethod
def from_json(data: dict[str, typing.Any]) -> typing.Self

See also🔗