Dataquery🔗
Definition🔗
class Dataquery(cogvariants.Dataquery):
alias: typing.Optional[str]
# Used for live query
channel: typing.Optional[str]
csv_content: typing.Optional[str]
csv_file_name: typing.Optional[str]
csv_wave: typing.Optional[list[testdata.CSVWave]]
# The datasource
datasource: typing.Optional[dashboard.DataSourceRef]
# Drop percentage (the chance we will lose a point 0-100)
drop_percent: typing.Optional[float]
# Possible enum values:
# - `"plugin"`
# - `"downstream"`
error_source: typing.Optional[typing.Literal["plugin", "downstream"]]
# Possible enum values:
# - `"frontend_exception"`
# - `"frontend_observable"`
# - `"server_panic"`
error_type: typing.Optional[typing.Literal["frontend_exception", "frontend_observable", "server_panic"]]
flamegraph_diff: typing.Optional[bool]
# true if query is disabled (ie should not be returned to the dashboard)
# NOTE: this does not always imply that the query should not be executed since
# the results from a hidden query may be used as the input to other queries (SSE etc)
hide: typing.Optional[bool]
# Interval is the suggested duration between time points in a time series query.
# NOTE: the values for intervalMs is not saved in the query model. It is typically calculated
# from the interval required to fill a pixels in the visualization
interval_ms: typing.Optional[float]
labels: typing.Optional[str]
level_column: typing.Optional[bool]
lines: typing.Optional[int]
max_val: typing.Optional[float]
# MaxDataPoints is the maximum number of data points that should be returned from a time series query.
# NOTE: the values for maxDataPoints is not saved in the query model. It is typically calculated
# from the number of pixels visible in a visualization
max_data_points: typing.Optional[int]
min_val: typing.Optional[float]
nodes: typing.Optional[testdata.NodesQuery]
noise: typing.Optional[float]
points: typing.Optional[list[list[object]]]
pulse_wave: typing.Optional[testdata.PulseWaveQuery]
# QueryType is an optional identifier for the type of query.
# It can be used to distinguish different types of queries.
query_type: typing.Optional[str]
raw_frame_content: typing.Optional[str]
# RefID is the unique identifier of the query, set by the frontend call.
ref_id: typing.Optional[str]
# Optionally define expected query result behavior
result_assertions: typing.Optional[testdata.ResultAssertions]
# Possible enum values:
# - `"annotations"`
# - `"arrow"`
# - `"csv_content"`
# - `"csv_file"`
# - `"csv_metric_values"`
# - `"datapoints_outside_range"`
# - `"error_with_source"`
# - `"exponential_heatmap_bucket_data"`
# - `"flame_graph"`
# - `"grafana_api"`
# - `"linear_heatmap_bucket_data"`
# - `"live"`
# - `"logs"`
# - `"manual_entry"`
# - `"no_data_points"`
# - `"node_graph"`
# - `"predictable_csv_wave"`
# - `"predictable_pulse"`
# - `"random_walk"`
# - `"random_walk_table"`
# - `"random_walk_with_error"`
# - `"raw_frame"`
# - `"server_error_500"`
# - `"simulation"`
# - `"slow_query"`
# - `"streaming_client"`
# - `"table_static"`
# - `"trace"`
# - `"usa"`
# - `"variables-query"`
scenario_id: typing.Optional[typing.Literal["annotations", "arrow", "csv_content", "csv_file", "csv_metric_values", "datapoints_outside_range", "error_with_source", "exponential_heatmap_bucket_data", "flame_graph", "grafana_api", "linear_heatmap_bucket_data", "live", "logs", "manual_entry", "no_data_points", "node_graph", "predictable_csv_wave", "predictable_pulse", "random_walk", "random_walk_table", "random_walk_with_error", "raw_frame", "server_error_500", "simulation", "slow_query", "streaming_client", "table_static", "trace", "usa", "variables-query"]]
series_count: typing.Optional[int]
sim: typing.Optional[testdata.SimulationQuery]
span_count: typing.Optional[int]
spread: typing.Optional[float]
start_value: typing.Optional[float]
stream: typing.Optional[testdata.StreamingQuery]
# common parameter used by many query types
string_input: typing.Optional[str]
# TimeRange represents the query range
# NOTE: unlike generic /ds/query, we can now send explicit time values in each query
# NOTE: the values for timeRange are not saved in a dashboard, they are constructed on the fly
time_range: typing.Optional[testdata.TimeRange]
usa: typing.Optional[testdata.USAQuery]
with_nil: typing.Optional[bool]
Methods🔗
to_json🔗
Converts this object into a representation that can easily be encoded to JSON.
from_json🔗
Builds this object from a JSON-decoded dict.